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TEMPERATURE DISPLACEMENTS AND STRESSES IN GLASS-REINFORCED
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Glass-reinforced strip consists of a strand of straightened glass
fibers arranged in a definite order and impregnated with resin. The
physicomechanical properties of glass-reinforced strip determine the
design propesties of oriented glass-reinforced plastics. It is therefore
of interest to study the stress distribution in the structure and the physi-
cochemical properties of glass-reinforced strip on the basis of models
of a structurally inhomogeneous body and the various properties of
reinforcement and resin.

1. Let a volume element of the glass-reinforced
strip be at a certain temperature ¢ =T — T,
We shall employ the very simple model illustrated in
Fig. 1. In this model elastic rods are arranged at the
nodes of a regular triangular net and run parallel with
the x; axis to form a doubly periodic structure sym-
metrical with respect to the planes x, = const and %, =
= const. The space between the fibers is filled with a
viscoelastic resin.

Let wy = 2, wy = wel® (@ = 1/3m) be the principal
periods of the net, A the dimensionless radius of the
fibers, a,, E,, and v, are respectively the linear co-
efficient of thermal expansion, Young’s modulus and
Poisson’s ratio for the fibers; ag, E*, and v* are the
linear coefficient of thermal expansion, operator mod-
ules, and operator Poisson’s ratio characterizing the
viscoelastic properties of the resin,* u; (i =1, 2, 3)
are the components of the displacement vector; hence-
forth quantities relating to the glass fibers will be de-
noted by the subscript ‘%4’’ and quantities relating to
the resin by the subscript “‘s.”’ :

The solution of the problem is constructed for a
volume at a sufficient distance from the outer edge of
the glass-reinforced strip; therefore in analyzing the
deformation of the body in a constant temperature field

*Linear forms of the relation between stresses and
strains for resins are applicable at sufficiently low
values of oji. Thus for example, for an epoxy-maleic
composition at T = 285°K the tensile stresses should
not exceed o < 0.80}.

it is necessary to take into account the faet that as a
result of stress redistribution between reinforcement
and resin with distance from the end faces of the strip
cross sections xy = const remain plane on average

Cend = a8 + <&y = B + <{e113q,
((sn> = \d["sn, F o= w@?sin a> B

2

1
I (1.1)

Here the symbol (£y;) denotes the averaged value of
€4, over the area of the basic periodic parallelogram
F, while (£,)5 and (€,y, denote the average values of
the still unknown strains of resin and reinforcement
due to redistribution of the stresses at the end faces
of the strip. Relations (1.1) hold for different tensile
stresses along the x; axis for reinforcement and resin,
while in the absence of an external force field the con-
dition

{aFs, + (dFo, =0

Fa 1"5

(1.2)

must be satisfied.

The general solution of the problem of thermal ex-
pansion of the strip is composed of the solution of the
problem of stretching along the x; axis, constructed
without account for the interaction between resin and
reinforcement, and the solution that does take this in-
teraction into account with the body in the plane de-
formed state when (€, = 0.

The solution of the first problem is elementary:

{B11de = Eu <&11da us + iu.’i = — Va3 {8 + aaze' (1-3)

Analogous relations may be obtained for the resin

Gonds = E*eyds, wp— iug= —vy*z{eu)s + a,28. (1.4)

z =2y + iy,

The solution of the second problem is obtained with
the aid [1] of the complex potentials &4 (z,t), ¥, (z,t)
and &g (z,t), ¥g (2,t). The boundary conditions at the
contour of each fiber Ly, (for z=7= Lyp;m, n =0,
+1....) for equal stresses and a given difference in
the displacements of reinforcement and resin take the
form [1]:

D, (1, 8) -+ O, (1, 1) — eB® {10/ (1, t) + ¥, (1, )} = D (, t) -
+ D, (5, ) — (0 (1, 1) + P (x, 1)), (1:5)

(1—G*[Co) Dy (T, 1)+ (1 + G* [ G) Do (T, ) — (1 — (1 q)
—G* [ G) ™ (1D (1, )+ Wa (1, O} — (¢* + DT, O) =
= 2G* {(0t; — o) {1 +va) B + (vg — v¥) Cerads} e
For the structure in question it may be required to

impose conditions (1.5) and (1.6) at only one arbitrar-
ily chosen contour, if the potentials &; (z,t) and ¥g (z, t)
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satisfy the relations of periodicity and symmetry

D, (z + 0;) = O, (z),

Vi(z +0) =¥ (z2) —o;®, (z) (=12, (1.7

D, (—z) = D, (2),
Ve(—2) =¥, (2).

(1.8)

Conditions (1.7) and (1.8) are satisfied when the un-
known functions are series of doubly periodic (elliptic)
Weierstrass ¥ functions

(Ds (Z, t) = 26* {(as _aa) (1 + Va) 9 + (Va —‘\‘*) <811>s} X

& x2k+2 SO(‘.’.I:) R
X [CO (t) + 2 Coli+a (t) ——(Q.k——f—“(l:i .

k=0 (1.9)
W, (2, t) = 2G* {{ots — dtg) (1 + v4) O + (ve —v*) (e11dst X -

f -] L2k+2g)(2k) (z) xzk+2Q(2lc+1, (z)
X Ldo (&) + Ago Doiess (£) TEEE L ‘% Cairz (£) TRE L) J .

Similarly, using the method of separation of variables,
we get
Doz, t) = 2G* {(ots — ag) (1 +va) 0 +

+ (va—v¥) Ceudst 2 aan (1) 22, (1.10)

¥, {z,8) = 2G™ {(@; —ta) (14+va) 04
+ (Vo —v¥) (811>s}‘1§0 bon (£) 22

Using (1.5), (1.6) and the condition that at the edge
of the basic parallelogram the principal vector of the
forces is zero, we can determine the unknowns a4y,
by, dop, and ¢,y from the following system of equa-
tions:

g (¢) = N+ +9S
’ TR+t — )66, °

S= Corea (8) AP otg, i

k=1

®* +1

gk (2) = T %G/, - Z Cansa () M P otk n,

(1.11)
szb __ w* -4 1) 3,2k+2
ok (1) = — T—gerg. Cr () — 2k + DA aopsa (t),
opes (£) = (26 -+ 1) eqe (1) — %071 Ca pok g, 1),

®* -1
o () = ")okda (t), Eeo (£) = do (¢)s
— 1+ [x*—1— (1, —1)G*/G,] S
wl)=—% R L

* 4 G*/G,
ﬁ—j-.GT//a‘ Cak (t) = —§cs (t) 6It1 2 d2n+2 (t) 7\'Mﬂk‘x’k—t. n+

n=0

+ E Cansz (8) [(2n -

n=0

2) 7\«2”2&@1:—1, - (2k . 1) k2n+2+ak ok, n]
(km=i,2,...).

Here aj i and B i are the coefficients of the Laur-
ent expansion {2] of the elliptic functions, £ = A%/ (wf
sin @) andnn = 1 ~¢ are the volume ratios of reinforce-
ment and resin,
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From (1.1), (1.21, (1.9), (1.10) and (1.11) we get re-
lations for the unknown strains

» T G*ao '
{81108 = _.(as__aa)EFa +8(1+v2(:a v*) 9,

-} — v¥) G*d, (1.12)
<€11>a = (ocs—oca) {1_—§ba~r8(i+va)(va v ) D}e'

E1”r
Ey* = 8E, +nE* + 8¢ (v

. — v¥)2G*a, ,

The displacements of the body in the plane x; =
= const are found from the known equations {1]

Uy + fg = 020 —v¥z (811> + (2G%) 1 X

X (¥ Qs (2, t) — 2z, (z, t) — (2, £)} (1.13)

(v 0=z 0 wels n={as vt 1),

2. The general linear form of the relation between
the stresses and strains for a body whose structure
has three planes of symmetry may be written [3, 4] as

i
Cud= g3 (611> — E 5 \622> E 5 \533> -+ B.*6,

Cepe) = F {(G12)»

sz Vos*

<822> = - E 3 <511> + E * <ca2> E * <53"> '{_ 32*81 (2.1)
(e3> = @ (O3

% * 1
(Bgg) = —% (o11> —%;’ {Sa> + oxd (Gsad + B0,

4
{eg1) = ¥ B3>+

Here E);, Vgn’ G;k are linear integral operators
characterizing the viscoelastic properties of the in—
homogeneous body, Bi* are the operator coefficients of
thermal expansion. The stresses and strains are av-
eraged over areas containing a sufficiently large (over
1000) number of fibers; for the uniform stress state of
a body with a regular doubly-periodic structure it is
sufficient to carry out the averaging within the limits
of the basic parallelogram.

The explicit form of the thermal expansion operator
is found from (1.1), (1.2), and (2.1) for {ojk) = 0t

By +8(1 £ o) (va —v*) G*as (9 9)

¥ __
Bt = o

oy — (s —aa) §

In order to determine 3,%, 83* we must examine the
average temperature displacements in the plane x; =
= const

Cug — ig) = oz (B* +Ba*) 0 + 12z (B* —By*) 8. (2.3)

If we compare the increments in the mean displace-
ments according to (2.3) and (1.13) as we move from

the point z to z + Wy then

1/2“’;‘ (B* + 3s%)8 + Yy (l_)j (32* — B30 = (Djlse - (DjV* CBrpds +
+ {(ots — aa) (1 4- va) 8+ (va —V*) Cerdo} [(¢*0; — 0; H2.4)
+ 20;) co— & (»*p; + 0;) &2y
(pr=1, pa=e'%
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Setting j = 1, 2, we find the operator coefficients of
thermal expansion of the inhomogeneous body

Be* = otg + (s —B1*) vor* —

s —aa) (1 4 Vi) (v — ey *) [ (vE — V) (2.5)
Bs* = ats + (ot — Bo*) var* —

— (ot 0ta) (1 -+ Vo) (V¥ — vy ) [ (vF —v,)

The operator coefficients v,* and vy * are found
from a study of the displacements when the strip is
subjected to tensile stresses {oy;) = const

Var* = v — (va — v¥) (x* + 1) (co— Eco)s (2.6)
Vo =V — (Vo — V¥ (%* D) {eo + E6s)  (npm o =Ysm, ca=0).

The approximate value of vy* (correct to 1%) is

E (v —w,) (»* +1) ,
L n 4B+ n(x, —1)G*/ G,

* _ * et
Vo1& = V3B =XV —

3. For a purely elastic resin and reinforcement all the operator
quantities in the above equations are replaced by the elastic constants.
Note that the physicomechanical properties of glasses in the tempera-
ture range to 500° K, .and even higher for some special glasses, show
only slight variation, whereas the properties of resins vary substan-
tially at these temperatures. Therefore the given case is of interest
for estimating the effect of the viscoelastic properties of the polymer
on the coefficients of thermal expansion of a composite material,
Figure 2 shows curves characterizing the change in the coefficients
of thermal expansion with the volume content of giass reinforcement.
For the type of structure in question the values of 8, and B3 are the
same.
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Fig. 2

Clearly, on average the value of B, is four times less than that
of B, as a result of the constraints imposed by the glass fibers on dis-
placements along the reinforcement. All the calculations were made
for glass-reinforced strip made with aluminoborosilicate fibers (v =
=0.2, Eqg = 0,981 7- 10° [bar], o, = 0.49- 107° [1/° K] and epoxy-
maleic resin (v, = 0,382, Eo = 0.981- 0,315 - 10° [bar], ag = 6+ 10°
[1/° KD).

The distribution of structural temperature stresses in the tape at
the resin-glass boundary is shown in Fig, 3. Curves 1, 2, and 3 depict
the dependence of the normal op (at € = 0.736 and § = 0.227) and
shear op g (at £ = 0,736) stresses on the angle of orientation of the
area element &, The average stresses on areas perpendicular to the
reinforcement are

Gudg = E, <y + 8v,Go{{a,—a,) (1 + v4) 0+ (vy — vo) <eud} a0

(sud, = Eq <end j— 8voGo {{, — a,) (1 - v,) 8- (vg ~— vo) <Erd b ack /0,

Below we present numerical values of the stresses for § =0.736
<G>, = 0.981- 0,59 bar, <Gj3>g =~ 0.981+2.636 bar, for
£=0.227 <oy;>, = 0,981 6.1 6 bar, <Oy >5=~ 0,981+ 1.76
bar.

4. On the basis of simple creep tests on epoxy-maleic specimens
at T = 285° K it was found that for sufficiently low stresses the visco-
elastic properties of the resin can be described using the elastic mem-
ory theory., The simplest relations are obtained by using exponential~
fractional functions as kernels. In this case we take {5]

- 1——2’\?0
E* = By {1 —wed, ), (— 0)}, vE=voil + Tve Ial—0)(4.1)

where

! ol SRR PRI Sy 1
9 =010 = arf ¢y — s ;;2 (—’—POEZk(—tH)tA)J . (4.9)
0

] =

In the given case we found
© =0yt 0w,  Ah=05 0g/0=0302 ©=0.172hour™.

At higher temperatures there is a substantial change in the param-
eters characterizing the viscoelastic properties of the resins and it is
necessary to take into account the change in ag.

A study of system (1.11) shows that for glass-reinforced plastics,
when G¢/G, « 1, the unknowns cyk(t) vary only slightly with time
(except for cq (1), therefore, to a good approximation (of the order
of 3%) we can set cyk = const.

With an accuracy of better than 1% we can assume that the co-
efficient 8, is constant. If we take into account the above-mentioned
approximations, the explicit value of the operator 8,™ will be

Bz* = Bo” + (@1 — Qo) var° X

' (A +v,) 2g—Q .
o=t 0, —a (’?W?s’z‘)} Bup (= 00 — Q1) -

(1 4 v,) gwo N : 1+v,
(o= ) —m g T (0 4 (8 — ) 5 X

/2 — vo

Xg{vo-—V21°— /g—(ﬂo

' 1 .
o + m} Iy (—0,—4),

Here 8, is the "instantaneous™ value of 8,,

o E'Va(ﬂo
2ty T —E A v Fn(d—2v,) Ge/ G,

Q=

1/p— v 1411 —2v,)6Go/G,
E=0oy =y, Qe =00 T (T 2vo) £ (1 —29,)1 Go/ G, *

To estimate the effect of the viscoelastic properties of the resin
on 8,*, we made a comparison of the value 8," - 1 at the initial
instant (for £ = 0,736, By =2.18° 107% [1/° K]).

As may be seen from the data, disregarding this effect leads to
an error of the order of 10%.

! e [ 2 0881¢bar
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